Pseudocode
KRUSKAL(G):
A = ∅
foreach v ∈ G.V:
MAKE-SET(v)
foreach (u, v) ordered by weight(u, v), increasing:
if FIND-SET(u) ≠ FIND-SET(v):
A = A ∪ {(u, v)}
UNION(u, v)
return A
MAIN CODE
struct Edge
{
int src, dest, weight;
};
struct Graph
{
int V, E;
struct Edge* edge;
};
struct subset
{
int parent;
int rank;
};
int find(struct subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
}
void KruskalMST(struct Graph* graph)
{
int V = graph->V;
struct Edge result[V];
int e = 0;
int i = 0;
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);
struct subset *subsets =
(struct subset*) malloc( V * sizeof(struct subset) );
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
while (e < V - 1)
{
struct Edge next_edge = graph->edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
}
return;
}